人工智能大数据,工作效率生产力
Ctrl + D 收藏本站,更多好用AI工具
当前位置:首页 » 最新消息

基于AI Agent探讨:安全领域下的AI应用范式

2025-06-16 12

先说观点:关于AI应用,通常都会聊准召。但在安全等模糊标准的场景下,事实上不存在准召的定义。因此,AI的目标应该是尽可能的“像人”。而想要评价有多“像人”,就先需要将人的工作数字化。而AI Agent是能够将数字化、自动化、智能化这几个转变过程相对顺畅衔接起来的一种框架。

0、为什么GPT让大家感到兴奋

单纯从能力上看,针对特定的任务,GPT是不如各种已有能力的:

  • 执行加减乘除、排序、去重等任务,GPT远不如各种脚本和工具来得靠谱。当任务相对简单时,还能够应付,一旦复杂度增加,GPT就会出现各种异常,比如:大数计算、长文本任务等。

  • 强监督任务,即使复杂度极高,比如下围棋,AlphaGo早就通过深度学习能力打败了人类,单纯GPT肯定是比敌AlphaGo的。尽管AlphaGo取得了如此高的成就,但带来了反响并没有GPT热烈。

基于AI Agent探讨:安全领域下的AI应用范式插图

在细分领域能力并不强的情况下,为什么GPT带来如此大的跨圈影响?ChatGPT功不可没,他呈现的“对话”这一交互形式,大幅度降低了AI的体验门槛,拉近了人与AI的距离。而能够支撑“对话”这种交互模式,其实也代表了GPT的一些能力特性:

  • 更宽松的输入和输出兼容:过往的AI通常都会要求特定格式的输入和输出,比如输入一堆特征,输出一个0和1的结果。而GPT的生成式能力,让输入输出可以变得十分随意。

  • 具备较强的通识:ChatGPT选用的“大力出奇迹”方式,增大参数量和训练集,也使得自身具备了足够多的知识储备,能够zero-shot应对大部分问答场景。

因此,以GPT为代表的大模型,相当于一个“宽而浅”的智能体。承担简单任务时,其灵活性会大幅度提升工作效率,但如果承担复杂工作,则往往不会给到有效的反馈。

1、AI Agent简介

那怎么提升LLM的能力深度呢?

最直接的方法是提供更多专项领域内的数据进行训练or微调,但成本会相对较高,也未必会取得正向效果,新的知识输入可能会导致模型遗忘已有的关键知识。

在Prompt中提供更多的上下文数据,是更直接的思路。

  • 比如GPT不知道新发生的事情,那就拼接一个搜索插件,在提问的时候,把查询的最新内容放到Prompt中,这样GPT就能将其作为参考来回答问题。

基于AI Agent探讨:安全领域下的AI应用范式插图1

  • 比如GPT不知道一些领域内的知识,那就提供一个知识库,在提问的时候,先在知识库中检索相关的知识放到Prompt中,这样

原文链接:https://blog.csdn.net/hwz2311245/article/details/136111528?ops_request_misc=%257B%2522request%255Fid%2522%253A%252276333dbcb153648ebac22f74d2453255%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=76333dbcb153648ebac22f74d2453255&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-21-136111528-null-null.nonecase&utm_term=AI+AIAgent

相关推荐

阅读榜

hellenandjeckett@outlook.com

加入QQ群:849112589

回顶部