第一篇 导论
第1 章 AI 芯片是人工智能未来发展的核心——什么是 AI 芯片 // 2
1.1 AI 芯片的历史 // 3
1.2 AI 芯片要完成的基本运算 // 5
1.2.1 大脑的工作机制 // 5
1.2.2 模拟大脑运作的神经网络的计算 // 7
1.2.3 深度学习如何进行预测 // 8
1.2.4 提高性能和降低功耗 // 9
1.3 AI 芯片的种类 // 11
1.3.1 深度学习加速器 // 15
1.3.2 类脑芯片 // 16
1.3.3 仿生芯片及其他智能芯片 // 17
1.3.4 基于忆阻器的芯片 // 19
1.4 AI 芯片的研发概况 // 22 1.5 小结 // 23
第2 章 执行“训练”和“推理”的 AI 芯片 // 25
2.1 深度学习算法成为目前的主流 // 25
2.1.1 深度学习的优势与不足 // 28
2.1.2 监督学习与无监督学习 // 29
2.1.3 AI 芯片用于云端与边缘侧 // 31
2.1.4 把 AI 计算从云端迁移到边缘侧 // 36
2.2 AI 芯片的创新计算范式 // 40
2.3 AI 芯片的创新实现方法 // 42 2.4 小 结 // 46
第二篇 最热门的 AI 芯片
第3 章 深度学习 AI 芯片 // 48
3.1 深度神经网络的基本组成及硬件实现 // 48
3.1.1 AI 芯片的设计流程 // 50
3.1.2 计算引擎和存储系统 // 51
3.2 算法的设计和优化 // 57
3.2.1 降低数值精度的量化技术 // 57
3.2.2 压缩网络规模、“修剪”网络 // 62
3.2.3 二值和三值神经网络 // 63
3.2.4 可变精度和迁移精度 // 64
3.2.5 简化卷积层 // 66
3.2.6 增加和利用网络稀疏性 // 66
3.3 架构的设计和优化 // 67
3.3.1 把数据流用图表示的架构设计 // 68
3.3.2 架构设计及优化的其他考虑 // 71
3.4 电路的设计和优化 // 72
3.4.1 用模数混合电路设计的 MAC // 73
3.4.2 FPGA 及其 Overlay 技术 // 74
3.5 其他设计方法 // 76
3.5.1 卷积分解方法 // 76
3.5.2 提前终止方法 // 76
3.5.3 知识蒸馏方法 // 77
3.5.4 经验测量方法 // 77
3.5.5 哈希算法取代矩阵乘法 // 78
3.5.6 神经架构搜索 // 78
3.6 AI 芯片性能的衡量和评价 // 79
3.7 小 结 // 82
第4 章 近年研发的 AI 芯片及其背后的产业和创业特点 // 85
4.1 对 AI 芯片巨大市场的期待 // 86 4.2 “1+3”大公司格局 // 87
4.2.1 英伟达 // 87
4.2.2 谷歌 // 91
4.2.3 英特尔 // 94
4.2.4 微软 // 96
4.2.5 其他一些著名公司的 AI 芯片 // 97
4.2.6 三位世界级 AI 科学家 // 101
4.3 学术界和初创公司 // 102
4.3.1 大学和研究机构的 AI 芯片 // 103
4.3.2 四家初创“独角兽”公司的芯片 // 111
4.4 小 结 // 119
第5 章 神经形态计算和类脑芯片 // 121
5.1 脉冲神经网络的基本原理 // 122
5.2 类脑芯片的实现 // 125
5.2.1 忆阻器实现 // 127
5.2.2 自旋电子器件实现 // 129
5.3 基于 DNN 和 SNN 的 AI 芯片比较及未来可能的融合 // 131
5.4 类脑芯片的例子及最新发展 // 133
5.5 小 结 // 138
第三篇 用于 AI 芯片的创新计算范式
第6 章 模拟计算 // 142
6.1 模拟计算芯片 // 143
6.2 新型非易失性存储器推动了模拟计算 // 147
6.2.1 用阻变存储器实现模拟计算 // 147
6.2.2 用相变存储器实现模拟计算 // 149
6.2.3 权重更新的挑战 // 150
6.2.4 NVM 器件的材料研究和创新 // 151
6.3 模拟计算的应用范围及其他实现方法 // 153
6.4 模拟计算的未来趋势 // 154
6.5 小 结 // 156
第7 章 存内计算 // 158
7.1 冯·诺依曼架构与存内计算架构 // 158
7.2 基于存内计算的 AI 芯片 // 161
7.2.1 改进现有存储芯片来完成存内计算 // 161
7.2.2 用 3D 堆叠存储技术来完成存内计算 // 164
7.2.3 用新型非易失性存储器来完成存内计算 // 165
7.3 小 结 // 171
第8 章 近似计算、随机计算和可逆计算 // 174
8.1 近似计算 // 174
8.1.1 减少循环迭代次数的近似计算 // 176
8.1.2 近似加法器和近似乘法器 // 177
8.1.3 降低电源电压的近似计算 // 178
8.1.4 基于 RRAM 的近似计算 // 180
8.1.5 应对电路故障的近似计算 // 182
8.2 随机计算 // 182
8.3 可逆计算 // 187
8.4 小 结 // 191
第9 章 自然计算和仿生计算 // 192
9.1 组合优化问题 // 193
9.2 组合优化问题的最优化算法 // 195
9.2.1 模拟退火 // 195
9.2.2 自组织映射 // 197
9.2.3 群体算法 // 199
9.3 超参数及神经架构搜索 // 201
9.3.1 粒子群优化的应用 // 202
9.3.2 强化学习方法的应用 // 202
9.3.3 进化算法的应用 // 203
9.3.4 其他自然仿生算法的应用 // 204
9.4 基于自然仿生算法的 AI 芯片 // 205
9.4.1 粒子群优化的芯片实现 // 206
9.4.2 用忆阻器实现模拟退火算法 // 207
9.5 小 结 // 208
第四篇 下一代 AI 芯片
第10 章 受量子原理启发的 AI 芯片——解决组合优化问题的突破 // 210
10.1 量子退火机 // 210
10.2 伊辛模型的基本原理 // 212
10.3 用于解决组合优化问题的 AI 芯片 // 214
10.3.1 基于 FPGA 的可编程数字退火芯片 // 214
10.3.2 使用 OPO 激光网络来进行最优化计算 // 216
10.3.3 CMOS 退火芯片 // 218
10.3.4 商用量子启发 AI 芯片 // 220
10.4 量子启发 AI 芯片的应用 // 221
10.5 小 结 // 223
第11 章 进一步提高智能程度的 AI 算法及芯片 // 224
11.1 自学习和创意计算 // 225
11.2 元学习 // 226
11.2.1 模型不可知元学习 // 226
11.2.2 元学习共享分层 // 227
11.2.3 终身学习 // 228
11.2.4 用类脑芯片实现元学习 // 229
11.3 元推理 // 230
11.4 解开神经网络内部表征的缠结 // 231
11.5 生成对抗网络 // 235
11.5.1 生成对抗网络的 FPGA 实现 // 239
11.5.2 生成对抗网络的 CMOS 实现 // 239
11.5.3 生成对抗网络的 RRAM 实现 // 240
11.6 小结 // 242
第12 章 有机计算和自进化 AI 芯片 // 243
12.1 带自主性的 AI 芯片 // 244
12.2 自主计算和有机计算 // 247
12.3 自进化硬件架构与自进化 AI 芯片 // 248
12.3.1 自进化硬件架构 // 248
12.3.2 自进化 AI 芯片 // 250
12.4 深度强化学习 AI 芯片 // 252
12.5 进化算法和深度学习算法的结合 // 253
12.6 有机计算和迁移学习的结合 // 254
12.7 小 结 // 255
第13 章 光子 AI 芯片和储备池计算 // 256
13.1 光子 AI 芯片 // 257
13.1.1 硅光芯片 // 258
13.1.2 光学神经网络架构 // 259
13.1.3 光子 AI 芯片 // 261
13.2 基于储备池计算的 AI 芯片 // 263
13.3 光子芯片的新进展 // 267
13.4 小 结 // 268
第五篇 推动 AI 芯片发展的新技术
第14 章 超低功耗与自供电 AI 芯片 // 271
14.1 超低功耗 AI 芯片 // 271
14.2 自供电 AI 芯片 // 274
14.2.1 使用太阳能的 AI 芯片 // 276
14.2.2 无线射频信号能量采集 // 277
14.2.3 摩擦生电器件 // 280
14.2.4 微尘大小的 AI 芯片 // 282
14.2.5 可采集能源的特性 // 283
14.2.6 其他可能被发掘的能源 // 284
14.3 小 结 // 285
第15 章 后摩尔定律时代的芯片 // 287
15.1 摩尔定律仍然继续,还是即将终结 // 287
15.1.1 摩尔定律进一步 // 290
15.1.2 比摩尔定律更多 // 293
15.1.3 超越 CMOS // 300
15.2 芯片设计自动化的前景 // 311
15.3 后摩尔定律时代的重要变革是量子计算芯片 // 312
15.4 小 结 // 314
第六篇 促进 AI 芯片发展的基础理论研究、应用和创新
第16 章 基础理论研究引领 AI 芯片创新 // 316
16.1 量子场论 // 317
16.1.1 规范场论与球形曲面卷积 // 317
16.1.2 重整化群与深度学习 // 321
16.2 超材料与电磁波深度神经网络 // 322
16.3 老子之道 // 327
16.4 量子机器学习与量子神经网络 // 331
16.5 统计物理与信息论 // 333
16.6 小结 // 336
第17 章 AI 芯片的应用和发展前景 // 338
17.1 AI 的未来发展 // 338
17.2 AI 芯片的功能和技术热点 // 341
17.3 AI 的三个层次和 AI 芯片的应用 // 343
17.4 更接近生物大脑的 AI 芯片 // 347
17.4.1 带“左脑”和“右脑”的 AI 芯片 // 349
17.4.2 用细菌实现的扩散忆阻器 // 350
17.4.3 用自旋电子器件实现的微波神经网络 // 351
17.4.4 用电化学原理实现模拟计算 // 352
17.5 AI 芯片设计是一门跨界技术 // 353
17.6 小 结 // 355
附录 中英文术语对照表 // 360
参考文献 // 369
· · · · · · (
原文链接:https://book.douban.com/subject/35427810/